On a classification of irreducible almost-commutative geometries V

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Classification of Irreducible Almost Commutative Geometries, A Second Helping

We complete the classification of almost commutative geometries from a particle physics point of view given in [1]. Four missing Krajewski diagrams will be presented after a short introduction into irreducible, non-degenerate spectral triples. PACS-92: 11.15 Gauge field theories MSC-91: 81T13 Yang-Mills and other gauge theories

متن کامل

Almost-Commutative Geometries Beyond the Standard Model

In [7–9] and [10] the conjecture is presented that almost-commutative geometries, with respect to sensible physical constraints, allow only the standard model of particle physics and electro-strong models as Yang-Mills-Higgs theories. In this publication a counter example will be given. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standar...

متن کامل

Classification of commutative association schemes with almost commutative Terwilliger algebras

We classify the commutative association schemes such that all nonprimary irreducible modules of their Terwilliger algebras are one-dimensional.

متن کامل

Almost-Commutative Geometries Beyond the Standard Model II: New Colours

We will present an extension of the standard model of particle physics in its almostcommutative formulation. This extension is guided by the minimal approach to almostcommutative geometries employed in [13], although the model presented here is not minimal itself. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model and two new fer...

متن کامل

Strongly Essential Flows on Irreducible Parabolic Geometries

We study the local geometry of irreducible parabolic geometries admitting strongly essential flows; these are flows by local automorphisms with higher-order fixed points. We prove several new rigidity results, and recover some old ones for projective and conformal structures, which show that in many cases the existence of a strongly essential flow implies local flatness of the geometry on an op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2009

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.3167287